High performances methods for
solving large sparse linear systems:
Direct and Incomplete factorization

NEGST (NExt Grid Systems and Techniques)

REDIMPS Workshop
Tokyo, May 28-29 2007

P. Hénon, P. Ramet, J. Roman
LaBRI, UMR CNRS 5800, Université Bordeaux | ﬁf NETA
Projet ScAlApplix, INRIA Futurs

Collaborations with MUMPS team (Bordeaux, Toulouse, Lyon)

Outlines

Introduction (motivation for hybrid approach)
Direct solvers

Methods to get dense blocks in ILU(k)
Experiments

Others approaches (MUMPS, HIPS)

Motivation of this work

* A popular choice as an algebraic preconditioner is an
ILU(k) preconditioner (level-of-fill based inc. facto.)

« BUT
» Parallelization is not easy

» Scalar formulation does not take advantage of

superscalar effect (i.e. BLAS)

=> Usually a low value of fill is used (k=0 or k=1)

» Many people are working on hybrid methods
(Luc Giraud at IRIT, David Keyes at Livermore, ...)

Motivation of this work

ILU + Krylov Methods

Based on scalar implementation

Difficult to parallelize (mostly DD +
Schwartz additive => # of
iterations depends on the number
of processors)

Low memory consumption

Precision ~ 107A-5

Direct methods

BLAS3 (mostly DGEMM)
Thread/SMP, Load Balance...

Parallelization job is done (MUMPS,
PASTIX, SUPERLU...)

High memory consumption : very
large 3D problems are out of their
league (100 millions unknowns)

Great precision ~ 107-18

We want a trade-off !

PaStiX solver

Current development team (SOLSTICE)

» F. Pellegrini (assistant professor LaBRI/INRIA)
* P. Hénon (researcher INRIA)
» P. Ramet (assistant professor LaBRI/INRIA)

» J. Roman (professor, leader of ScAlApplix INRIA project)

PhD student

* M. Faverge (NUMASIS project)

Others contributors since 1998

* D. Goudin (CEA-DAM)
* D. Lecas (CEA-DAM)

* Main users

» Electomagnetism & structural mechanics codes at CEA-DAM CESTA
* MHD Plasma instabilities for ITER at CEA-Cadarache (ASTER)

* Fluid mechanics at MAB Bordeaux

Graphs and Sparse Matrices:

Cholesky factorization

[[] []
[] [] []
[) [] []
[] [N]
[] [] [)
[N X]
[] [N]
[] [] [N N J
[N] [N J
[] [] [] []
1 3 7
8 6
10
9 2

G(A)

ill: new nonzeros in factor

Symmetric Gaussian elimination:
forj=1ton
add edges between j's
higher-numbered neighbors

Direct solver chain (in PaStiX)

Distributed
. N bolMatri Distributed factorized
grap partition symbolMatrix solverMatrix solverMatrix

(ordering & (block symbolic (refinement & (factorizing &

amalgamation) factorization) mapping) solving)
Distributed
solution

< >
Analyze (sequential steps) // fact. and solve

Direct solver chain (in PaStiX)

Distributed
Distributed factorized
solverMatrix solverMatrix

partition symbolMatrix

(ordering & (block symbolic (refinement & (factorizing &
amalgamation) factorization) mapping) solving)
Distributed
solution

Sparse matrix ordering (minimizes fill-in)
*Scotch: an hybrid algorithm
* incomplete Nested Dissection

* the resulting subgraphs being ordered with an
Approximate Minimum Degree method under
constraints (HAMD)

Partition and Block Elimination Tree

Orraph parblioneng Permvinted malris
! |_
r— _..-"_"a
= F
/ S -

L R
| - domain decomposition =1 !. h !'_u D

£ A

:I_.-') A
" i b

T |
i I] -)
Elirination graph .

Factorized matnx

Reordered maftriv Afrer Factarization
(RCM)

Direct solver chain (in PaStiX)

Distributed

Distributed factorized
solverMatrix solverMatrix

graph partition

(ordering & (block symbolic (refinement & (factorizing &
amalgamation) factorization) mapping) solving)
Distributed
N solution

i y 1he symbolic block factorization

MR - Q(GPI~Q(GP)*=Q(C*P)
=> linear in number of

blocks!

* Dense block structures
— only a extra few pointers
to store the matrix

Matrix partitioning and mapping

= Manage parallelism induced by sparsity (block elimination
tree).

— Split and distribute the dense blocks in order to take into
account the potential parallelism induced by dense
computations .

= Usoptimal block size for pipeli

Direct solver chain (in PaStiX)

Distributed
h .. Distributed factorized
grap partition slverMatrix solverMatrix

(ordering &

(block symbolic
amalgamation)

(refinement & (factorizing &
factorization)

mapping) solving)

Distributed

12345678 solution
12345 =5678
2 ~ £
1 %3 =45 3 %6 /8 CPU time prediction
12 23444 ¢ &7 o8

Exact memory ressources

01 020203 ©e/e7

Direct solver chain (in PaStiX)

Distributed
h . bolMatri Distributed factorized
grap partition symbolMatrix solverMatrix solverMatrix

(ordering &

(block symbolic
amalgamation)

(refinement & (factorizing &
factorization)

mapping) solving)

Distributed
solution

* Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation (all processors in the same
SMP node work directly in share memory)

» Less MPI communication and lower the parallel memory
overcost

Numerical experiments (TERA1)

* Successful approach for a large collection of industrial test
cases (PARASOL, Boeing Harwell, CEA) on IBM SP3

* TERA1 supercomputer of CEA lle-de-France
(ES45 SMP 4 procs)

* COUPOLE40000 :
26.5 106 of unknowns
1.5 10'9 NNZL and 10.8Tflops

» 356 procs: 34s
* 512 procs: 27s
» 768 procs: 20s

* (>500Gflop/s about 35% peak perf.)

Numerical experiments (TERA10)

* Successful approach on 3D mesh problem with about 30
millions of unkowns on TERA10 supercomputer

* But memory is the bottleneck !!!

MPI/Threads implementation for SMP
clusters

* Mapping by processor * Mapping by SMP node
Static scheduling by processor Static scheduling by thread

* Each processor owns its local part of | ¢ All the processors on a same SMP
the matrix (private user space) node share a local part of the matrix
(shared user space)

* Message passing (MPI or * Message passing (MPI) between
MPI_shared_memory) between any processors on different SMP nodes
processors

Direct access to shared memory
(pthread) between processors on a
same SMP node

* Aggregation of all contributions is done| ¢ Aggregation of non local contributions

per processor is done per node
* Data coherency insured by MPI » Data coherency insured by explicit
semantic mutex

SP3: AUDI ; N=943.103; NNz, =1,21.10°; 5,3 TFlops

Processors 16 32 64 128
8Ly 16| 48196 270,16 152,58 86,07
[g 500,00
()
£38 8| 476,40 26509 14519 81,90 400,00+
s 2 » 300,004 |
O 4| 472,67 266,89 155,23 87,56 | £ SMP1
g s = 200,007 SMP4
z= 1 (211,35) (134,45) 100,00+ SMP8

SMP16

0,00 u u i
16 32 64 128

Processors

§

£ 250 g

é g 200 SMP1 fﬁ “SMP1
g E 1%0 SMP4 & SvP4

= 1007 SMP8 . SMP8

SMP16 SMP16

16 32 64 128
Processors

16 32 64 128
Processors

AUDI : 943.10% (symmetric)

* SP4 : 32 ways Power4+ « SP5:16w
(with 64Go) (with 32
Procs 32 64 Procs 2 4
9, 32921 6003 || o 16| - e smr w
S8 S8
£8 16| 9314 4780 £8 8| - - 177 986 57,7 313
“— O “—
o — o —
£S 8| 9631 4728 ES 4| - 368 182 997 553 -
z- 100,4 =
4 0 51,02 2| 686 373 185 95 - -
MHD1 : 485.103% (unsymmetric)
* SP4 : 32 ways Power4+ * SP5: 16 ways Power5
(with 64Go) (with 32Go)
Procs 32 64 Procs 2 4 8 16 32 64
5 7 @ 1 4,2 3,4
g % 32| 199,17 1159 T 16 3 8 6
52 1618789 111,99 £ g 8 261 141 783
°F 5 2
EZ 8| 197,99 11579 ES 4 505 262 136
z Eh
4| 20268 117,80 2| o977 506 265

How to reduce memory resources

* Goal: we want to adapt a (supernodal) parallel direct solver
(PaStiX) to build an incomplete block factorization and
benefit from all the features that it provides:

» Algorithmic is based on linear algebra kernels (BLAS)

» Load-balancing and task scheduling are based on a fine
modeling of computation and communication

» Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation

Incomplete factorization outlines

Which modifications in the direct solver?
The symbolic incomplete factorization
An algorithm to get dense blocks in ILU
Experiments

Distributed
Distributed factorized

graph partition symbolMatrix solverMatrix solverMatrix

(ordering & (block symbolic (refinement & (factorizing &
amalgamation) factorization) mapping) solving)

Distributed

Keep a N.D. ordering (NO RCM) solution

Distributed
incomplete

Distributed factorized

graph solverMatrix solverMatrix

(ordering & . (factorizing &
amalgamation) block S.F.) 0 solving)

Distributed

solution

Distributed

. N bolMatri Distributed factorized
grap partition symbolMatrix solverMatrix solverMatrix

(ordering & (block symbolic (refinement & (factorizing &
amalgamation) factorization) mapping) solving)

Distributed

Main modification solution

Distributed
incomplete

Distributed factorized
solverMatrix solverMatrix

graph iti yubolMatrix

(ordering & rofi it (factorizing & GMRES
amalgamation) block S.F.) 0 solving)
Distributed
solution

Distributed

Distributed factorized

graph partition symbolMatrix solverMatrix solverMatrix

(ordering & (block symbolic (refinement & (factorizing &
amalgamation) factorization) mapping) solving)
Distributed
solution
Distributed
incomplete
. i Distributed factorized
graph partition symbolMatrix salverMatrix solverMatrix

C.G

(ordering & (refinament (factorizing & GMRES
amalgamation) block S.F.) solving)
Distributed
solution

Incomplete factorization outlines

* Which modifications in the direct solver?
» The symbolic incomplete factorization

* An algorithm to get dense blocks in [LU
* Experiments

Level based ILU(k)

* Scalar formulation of the level-of-fill:
Non zero entries of A have a level 0.
Consider the elimination of the k" unknowns during the fact.
then:
Level(aij) = MIN(level(aij) , level(aik)+level(akj)+1)

akk akj |
ajj » ®
aik aii Level 3 k1, k2, k3 <iandj
aii
L] i

Level-of-fill metric

* Scalar formulation of the level-of-fill:

* Afill-path, in the graph associated with the matrix A, is
a path between two nodes i and j such that the nodes
in this path have smaller number than i and j

» There is a fill-in value (i,j), at the end of the Gauss
elimination, iff there is a fill-path between i and |
+ At the end of the factorization, the level-of-fill value (i,j)

is p iff there is a shortest fill-path of length p+1 between
i andj (O for terms in A)

Level based ILU(k)

* The scalar incomplete factorization have the same
asymptotical complexity than the Inc. Fact.

* BUT: it requires much less CPU time

* D. Hysom and A. Pothen gives a practical algorithm that can
be easily // (based on the search of elimination paths of
length <= k+1) [Level Based Incompleted Factorization:
Graphs model and Algorithm (2002)]

Level based ILU(k)

* In a FEM method a mesh node corresponds to several
Degrees Of Freedom (DOF) and in this case we can use the
node graph instead of the adj. graph of A i.e.:

Q(G,P)— Q(G,P)}=Q(G*,P) P = partition of mesh nodes

¢ This means the symbolic factorization will have a complexity
in the respect of the number of nodes whereas the
factorization has a complexity in respect to the number of

DOF.

Incomplete factorization outlines

* Which modifications in the direct solver?
* The symbolic incomplete factorization

» An algorithm to get dense blocks in ILU
* Experiments

How to build a dense block structure in
ILU(k) factors ?

* First step: find the exact supernode partition in the ILU(k)
NNZ pattern

* In most cases, this partition is too refined (dense blocks are
usually too small for BLAS3)

* ldea: we allow some extra fill-in in the symbolic factor to build
a better block partition

» Ex: How can we make bigger dense blocks if we allow 20%
more fill-in ?

How to build a dense block structure
in ILU(k) factors ?

* We imposed some constraints:

» any permutation that groups columns with similar NNZ
pattern should not affect G¥

» any permutation should not destroy the elimination tree
structure

=> We impose the rule « merge only with your father... » for the
supernode

Finding an approximated Supernodes
Partition (amalgamation algorithm)

v
v
’
’
’

First step : find the exact supernode partition

Finding an approximated Supernodes
Partition (amalgamation algorithm)

El =extra fill-in

While the fill-in tolerance a is respected do:

Merge the couple of supernodes that add the
less extra fill-in

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the son

Finding an approximated Supernodes
Partition (amalgamation algorithm)

L Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Hl = zero entries

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

LI Need to update the « merge » cost of the sons

Finding an approximated Supernodes
Partition (amalgamation algorithm)

L Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Repeat while extra fill-in < tol

» = =

Cost of the algorithm

¢ The approximate supernode merging algorithm is really
cheap compare to the other steps

» At each step: recompute fill-add for modified (son-father)
couples and maintain the heap sort.

» Complexity bound by O(D.N,+ N,.Log(N,))
N, : number of exact supernodes in ILU factors
D : maximum number of extradiagonal blocks in a block-
column

Numerical experiments

* Results on IBM power5 + Switch “Federation”
* All computations were performed in double precision
¢ lterative accelerator was GMRES (no restart)

* Stopping criterion for iterative accelerators was a relative
residual norm (||b-A.x||/||b]|) of 1e-7

Test cases:

* AUDIKW_1 : Symmetric matrix (Parasol collection)
n=943,695 nnz(A)= 39,297,771
With direct solver : nnz(L) = 30 x nnz(A)
> 3D total solution in 91s on 16 procs

* MHD : Unsymmetric matrix (Y. Saad collection)
n =485,597 nnz(A) = 24,233,141
With direct solver : nnz(L) = 46 x nnz(A)
> 3D total solution in 139s on 16 procs

AUDI {1 proc PWRE]

B

v
]
+— b=l
ey R
¥ ik

» 3 i

i
=

Fecforicatizn e |seconds|
-
=
1

= g

1] E 1 ih b3 .
Filan [& KME1AY

AUIDI {1 proc PWRE)

a0
—
w0
E .
§ w0 -, .
T g v km
E v 5, - fml
5 ™ — k=3
E B = - R
o # Bk
'5"\.' L - - -
- | - — e
' 1i]
1]
o
-] k1] 1B] i5
Fillin | 5 MMEAT]
BLRDI {1 proc PWRE)
it
E i =
B w]
= J +— b=}
g] = - R
B E Bk
] P L]
L] = 4
'] " il e

in "
Falldn [o MREjA]|

230

& =
] =

Teriml Hrre [econds]
E

B

+

BUDI |1 proc PWRE)

Filan [& KME1AY

" km
w- fm]
+— b=l

Al g

T

Parallel Time:

AUDI (Powerb5)

1 processor 16 processors
K a Fact | TR solv Total Fact TR Solv Total
1120% | 74.5 4.59 690.1 214 0.51 91.5
1140% | 56.4 4.44 620.3 12.7 0.42 67.0
3| 20% | 331.1 7.97 936.8 39.2 0.91 108.7
3| 40% | 194.6 7.57 732.0 18.6 0.66 65.7
5| 20% | 5185 8.86 1058.9 52.3 1.16 123.1
5] 40 % | 258.1 7.80 679.3 21.2 0.78 63.3

Table 3. Efrct of smalpamstion ratie a for MHD problem

e = Fl kil

155515

Tubde 4, Performances on 1

1, B gnil 6 processare WIS dor st o

&L |

| oo e |

3 Feou Dlang S~ lTial]l
] |Iq ed] BEY

E] K 1.31] s

] ki i 1. 98] (A%

L pv-cves i

-

Tiiwang . Sudeer [Tivlal
T E5F
2 N o
] []

[T ||

STHE

1n e
= Iu.-u. e [Tivial]

¥

FE ITi
1 I-.l 13 S 251

[T

'I':-l\. Trisng "l;]'rll:-u:|
1 =0

ErTTe)
A
M HC

Prospects:

 Parallelization of the ordering (ParMetis, PT-Scotch)
and of the Inc. Symbolic Factorization

* Perform more experiments to explore different
classes of problems with symmetric and
unsymmetric version

* Plug this solver in real simulations (CEA, ITER)

ASTER project

* ANR CIS 2006 Adaptive MHD Simulation of Tokamak ELMs for ITER (ASTER)

* The ELM (Edge-Localized-Mode) is MHD instability which localised at the
boundary of the plasma

* The energy losses induced by the ELMs within several hundred microseconds
are a real concern for ITER

* The non-linear MHD simulation code JOREK is under development at the CEA to
study the evolution of the ELM instability

* To simulate the complete cycle of the ELM instability, a large range of time scales
need to be resolved to study:
» The evolution of the equilibrium pressure gradient (~seconds)
» ELM instability (~hundred microseconds)
» a fully implicit time evolution scheme is used in the JOREK code

* This leads to a large sparse matrix system to be solved at every time step.

* This scheme is possible due to the recent advances made in the parallelized
direct solution of general sparse matrices (MUMPS, PaStiX, SuperlLU, ...)

NUMASIS project

Middleware for NUMA architecture
Application to seismology simulation

New dynamic scheduling algorithm for solvers
Take into account non-uniform acces to memory
Use of MadMPI (R. Namyst)

* Need a middleware to handle complexe architectures
* Multi-Rails, packet re-ordering, ...

PhD of Mathieu Faverge (INRIA-LaBRI)

HIPS solver

Recent work of P. Hénon and J. Gaidamour (PhD student)

Idea : build many subdomains that will be factorized with
direct method

Iterations on the Schur complement

Use of a specific ordering to control fill-in based on
Hierachical Interface Decomposition (HID) [Y. Saad, Phidal]

Parallel implementation is achieved by mapping many
subdomains on each processor

A way to get an efficient solver on grid architecture ?

HIPS solver

2 3
1 Global domain partitioned into
53 6 subdomains
2 6
4 5
1 2 3| 4 5 6
N Local blocked-matrix for subdomain 2
2| 2
3| 2
41 2 T .
mpty sparse matrix in intial matr
(fill=in occurs during factorization
5 2 kk Fill-in in these blocks is allowed
.Jin the locally consistent strategy
6| 2

HIPS solver

* Strictly consistant fill-in: ar

 Fill-in is not allowed between ‘

connectors of a same level

23

» Same structure of matrix A

45

HIPS solver

* Locally consistant fill-in:

* Fill-in is allowed between
connectors that are adjacent to
a same subdomain

HIPS solver
Pl P3
P2 P4

Links

e Scotch : http://gforge.inria.fr/projects/scotch
e PaStiX : http://gforge.inria.fr/projects/pastix

« MUMPS : http://mumps.enseeiht.fr/
http://graal.ens-lyon.fr/MUMPS

* ScAlApplix : http://www.labri.fr/project/scalapplix

* ANR CIGC Numasis
* ANR CIS Solstice & Aster

* Latest publication : to appear in Parallel Computing : On
finding approximate supernodes for an efficient ILU(k)
factorization

* For more publications, see : http://www.labri.fr/~ramet/

