

Motivation of this	work
ILU + Krylov Methods	Direct methods
Based on scalar implementation	BLAS3 (mostly DGEMM) Thread/SMP, Load Balance
Difficult to parallelize (mostly DD + Schwartz additive => # of iterations depends on the number of processors)	Parallelization job is done (MUMPS, PASTIX, SUPERLU)
Low memory consumption	High memory consumption : very large 3D problems are out of their league (100 millions unknowns)
Precision ~ 10^-5	Great precision ~ 10^-18
We want a	a trade-off !

Direct solver chain (in PaStiX)

Matrix partitioning and mapping

- ⇒ Manage parallelism induced by sparsity (block elimination tree).
- ⇒ Split and distribute the dense blocks in order to take into account the potential parallelism induced by dense computations.
- ⇒ Use optimal block size for pipelined BLAS3 operations

MPI/Threads implementation for SMP clusters

•	Mapping by processor Static scheduling by processor	•	Mapping by SMP node Static scheduling by thread
•	Each processor owns its local part of the matrix (private user space)	•	All the processors on a same SMP node share a local part of the matrix (shared user space)
•	Message passing (MPI or MPI_shared_memory) between any	•	Message passing (MPI) between processors on different SMP nodes
	processors		Direct access to shared memory (pthread) between processors on a same SMP node
•	Aggregation of all contributions is done per processor	•	Aggregation of non local contributions is done per node
•	Data coherency insured by MPI semantic	•	Data coherency insured by explicit mutex

MHD1 : 485.10³ (unsymmetric)

- SP4 : 32 ways Power4+ (with 64Go)
- SP5 : 16 ways Power5 (with 32Go)

Procs		32	64	Procs		2	4	8	16	32	64
ads	32	199,17	115,97	ads	16	-	-	-	139	84,2	63,4
of thre proce	16	187,89	111,99	f threa	8	-	-	261	141	78,3	-
lum. o	8	197,99	115,79	MPL of	4	-	505	262	136	-	-
2	4	202,68	117,80	Ž	2	977	506	265	-	-	-

Level based ILU(k)

- The scalar incomplete factorization have the same asymptotical complexity than the Inc. Fact.
- BUT: it requires much less CPU time
- D. Hysom and A. Pothen gives a practical algorithm that can be easily // (based on the search of elimination paths of length <= k+1) [Level Based Incompleted Factorization: Graphs model and Algorithm (2002)]

Incomplete factorization outlines

- Which modifications in the direct solver?
- The symbolic incomplete factorization
- An algorithm to get dense blocks in ILU
- Experiments

How to build a dense block structure in ILU(k) factors ?

- First step: find the exact supernode partition in the ILU(k) NNZ pattern
- In most cases, this partition is too refined (dense blocks are usually too small for BLAS3)
- Idea: we allow some extra fill-in in the symbolic factor to build a better block partition
- Ex: How can we make bigger dense blocks if we allow 20% more fill-in ?

How to build a dense block structure in ILU(k) factors ?

- We imposed some constraints:
- any permutation that groups columns with similar NNZ pattern should not affect *G^k*
- any permutation should not destroy the elimination tree structure
- => We impose the rule « merge only with your father... » for the supernode

Numerical experiments

- Results on IBM power5 + Switch "Federation"
- All computations were performed in double precision
- Iterative accelerator was GMRES (no restart)
- Stopping criterion for iterative accelerators was a relative residual norm (||b-A.x||/||b||) of 1e-7

Parallel Time: AUDI (Power5)

			1 processo	or		16 processors	
К	α	Fact	TR solv	Total	Fact	TR Solv	Total
1	20 %	74.5	4.59	690.1	21.4	0.51	91.5
1	40 %	56.4	4.44	620.3	12.7	0.42	67.0
3	20 %	331.1	7.97	936.8	39.2	0.91	108.7
3	40 %	194.6	7.57	732.0	18.6	0.66	65.7
5	20 %	518.5	8.86	1058.9	52.3	1.16	123.1
5	40 %	258.1	7.80	679.3	21.2	0.78	63.3

		W Superious	W III-ocios	Filein	Arealg.	Inc. Fact.	Triang. Solve	Durations	Total
	20	40215	538640	-4.04	4.36	12.3	1.05	153	172
1	0	132615	1185901	-1.77	1.51	16.0	2.04	172	366
1	10	103119	1199872	1.96	1.83	14.3	1.67	164	268
1	20	91975	1086335	2.16	1.92	13.7	1.55	164	- 267
1	40	71767	903500	-2.57	2.15	12.7	1.36	162	288
1	60	56402	783112	2,98	2.33	12.1	1.22	158	- 204
1	-80	43912	651356	3.41	2.48	12.2	1.12	156	186
1	100	33590	568.447	3.81	2.62	12.4	1.05	153	173
1	1:20	26375	479080	4.19	-2.76	12.8	0.97	149	157
3	100	50361	801279	-6.34	6.32	37.4	1.44	88	164
3	0	132485	3202800	3.69	2.20	85.6	3.52	100	437
3	10	93524	2296760	4.10	2.67	66.7	2.66	98	327
3	20	76199	1862555	4.51	2.93	57.8	2.30	97	- 280
3	4.0	53717	1390499	5.34	3.26	50.3	1.91	94	229
3	60	38617	1091834	6.15	3.53	- 46.5	1.67	92	- 200
3	-8D	27862	853927	6.96	3.75	44.6	1.49	89	177
3	100	20805	658399	-7.74	3.92	43.8	1.35	86	159
3	1:20	16239	531220	8.57	4.05	44.2	1.27	83	149
5	160	47646	932096	8.95	7.84	73.6	1.71	67	155
5	0	131905	4633544	5.42	2.76	217	4.81	79	- 596
5	10	83457	3235398	6.03	3.42	164	3.56	78	-441
5	20	64718	2692706	6.65	3.69	145	3.12	77	385
5	4D	41257	1811:205	7.82	4.13	115	2.38	73	255
5	60	27553	1181096	8.97	4.45	94.3	1.91	69	226
5	80	19373	\$33995	10.15	4.68	85.5	1.65		194
5	100	14174	608951	11.35	4.84	80.4	1.53	64	178
5	1.20	10975	455535	12.51	4.96	79.6	1.48	61	109

Table 3. Effect of amalgamation ratio α for MHD problem

_			- AUD	1			
_	1	processor		4	processors		
k.	Inc. Fact.	Triang, Solve	Total	Inc. Fact.	Triang, Solve	Total	
1	51.7	2.98	397	14.2	0.84	113	
3	167	4.12	451	43.1	1.21	125	
5	304	5.15	592	78.2	1.88	192	
_		processor		D. D.	processors		
k	Inc. Fact.	Triang. Solve	Total	Inc. Fact.	Triang, Solve	Total	
1	7.56	0.51	68.4	6.34	0.35	52.2	
4	22.4	0,74	73.8	12.8	0.12	48.4	
5	40.5	0.91	91.7	22.1	0.76	64.9	
			MHI	2			
_	1	processor		4 processors			
k.	Inc. Fact.	Triang. Solve	Total	Inc. Fact.	Triang. Solve	Total	
1	12.8	1.05	172	3.25	0.29	48.2	
3	37.4	1.44	164	9.83	0.41	46.5	
5	73.6	1.71	188	19.6	0,50	58.3	
_		processor		16 processors			
<u>k</u>	Inc. Fact.	Triang, Solve	Total	Inc. Fact.	Triang, Solve	Total	
1	1.94	0.18	29.6	2.08	0.17	27.9	
2	5.25	0.27	28.9	4.17	0.25	20.1	
	10.21	0.32	3.1.80	1 1.261	0.29	281.2	

Parallelization of the ordering (ParMetis, PT-Scotch) and of the Inc. Symbolic Factorization Perform more experiments to explore different classes of problems with symmetric and unsymmetric version Plug this solver in real simulations (CEA, ITER)

ASTER project ANR CIS 2006 Adaptive MHD Simulation of Tokamak ELMs for ITER (ASTER) The ELM (Edge-Localized-Mode) is MHD instability which localised at the boundary of the plasma The energy losses induced by the ELMs within several hundred microseconds are a real concern for ITER The non-linear MHD simulation code JOREK is under development at the CEA to study the evolution of the ELM instability To simulate the complete cycle of the ELM instability, a large range of time scales need to be resolved to study: • The evolution of the equilibrium pressure gradient (~seconds) ELM instability (~hundred microseconds) a fully implicit time evolution scheme is used in the JOREK code This leads to a large sparse matrix system to be solved at every time step. This scheme is possible due to the recent advances made in the parallelized direct solution of general sparse matrices (MUMPS, PaStiX, SuperLU, ...)

HIPS solver

Global domain partitioned into 6 subdomains

Local blocked-matrix for subdomain 2

Empty sparse matrix in intial matrix (fill-in occurs during factorization)

Fill-in in these blocks is allowed in the locally consistent strategy

HIPS solver

- Strictly consistant fill-in:
 - Fill-in is not allowed between connectors of a same level
 - Same structure of matrix A

HIPS solver

Links

- Scotch : <u>http://gforge.inria.fr/projects/scotch</u>
- PaStiX : <u>http://gforge.inria.fr/projects/pastix</u>
- MUMPS : <u>http://mumps.enseeiht.fr/</u> <u>http://graal.ens-lyon.fr/MUMPS</u>
- ScAlApplix : <u>http://www.labri.fr/project/scalapplix</u>
- ANR CIGC Numasis
- ANR CIS Solstice & Aster
- Latest publication : to appear in Parallel Computing : On finding approximate supernodes for an efficient ILU(k) factorization
- For more publications, see : http://www.labri.fr/~ramet/