
High performances methods for
solving large sparse linear systems:
Direct and Incomplete factorization

NEGST (NExt Grid Systems and Techniques)
REDIMPS Workshop

Tokyo, May 28-29 2007

P. Hénon, P. Ramet, J. Roman
LaBRI, UMR CNRS 5800, Université Bordeaux I
Projet ScAlApplix, INRIA Futurs

Collaborations with MUMPS team (Bordeaux, Toulouse, Lyon)

Outlines

• Introduction (motivation for hybrid approach)
• Direct solvers
• Methods to get dense blocks in ILU(k)
• Experiments
• Others approaches (MUMPS, HIPS)

Motivation of this work

•• A A popularpopular choicechoice as an as an algebraicalgebraic preconditionerpreconditioner isis an an
ILU(k) ILU(k) preconditionerpreconditioner ((levellevel--ofof--fillfill basedbased incinc. facto.). facto.)

•• BUTBUT
ParallelizationParallelization isis not not easyeasy

ScalarScalar formulation formulation doesdoes not not taketake advantageadvantage of of
superscalarsuperscalar effecteffect (i.e. BLAS) (i.e. BLAS)
=> => UsuallyUsually a a lowlow value of value of fillfill isis usedused (k=0 or k=1)(k=0 or k=1)

ManyMany peoplepeople are are workingworking on on hybridhybrid methodsmethods
(Luc Giraud (Luc Giraud atat IRIT, David IRIT, David KeyesKeyes atat LivermoreLivermore, , ……))

Motivation of this work
ILU + Krylov ILU + Krylov MethodsMethods
BasedBased on on scalarscalar implementationimplementation

DifficultDifficult to to parallelizeparallelize ((mostlymostly DD + DD +
Schwartz additive => # of Schwartz additive => # of
iterationsiterations dependsdepends on the on the numbernumber
of processors)of processors)

LowLow memorymemory consumptionconsumption

PrecisionPrecision ~ 10^~ 10^--5 5

Direct Direct methodsmethods

BLAS3 (BLAS3 (mostlymostly DGEMM)DGEMM)
Thread/SMP, Thread/SMP, LoadLoad BalanceBalance……

ParallelizationParallelization job job isis donedone (MUMPS, (MUMPS,
PASTIX, SUPERLUPASTIX, SUPERLU……))

High High memorymemory consumptionconsumption : : veryvery
large 3D large 3D problemsproblems are out of are out of theirtheir
leagueleague (100 millions (100 millions unknownsunknowns))

Great Great precisionprecision ~ 10^~ 10^--1818

We want a trade-off !

PaStiX solver

• Current development team (SOLSTICE)
• F. Pellegrini (assistant professor LaBRI/INRIA)
• P. Hénon (researcher INRIA)
• P. Ramet (assistant professor LaBRI/INRIA)
• J. Roman (professor, leader of ScAlApplix INRIA project)

• PhD student
• M. Faverge (NUMASIS project)

• Others contributors since 1998
• D. Goudin (CEA-DAM)
• D. Lecas (CEA-DAM)

• Main users
• Electomagnetism & structural mechanics codes at CEA-DAM CESTA
• MHD Plasma instabilities for ITER at CEA-Cadarache (ASTER)
• Fluid mechanics at MAB Bordeaux

Graphs and Sparse Matrices:
Cholesky factorization

10

1 3

2

4

5

6

7

8

9

10

1 3

2

4

5

6

7

8

9

G(A) G*(A)

Symmetric Gaussian elimination:
for j = 1 to n

add edges between j’s
higher-numbered neighbors

Fill: new nonzeros in factor

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Analyze (sequential steps) // fact. and solve

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Sparse matrix ordering (minimizes fill-in)
•Scotch: an hybrid algorithm

• incomplete Nested Dissection
• the resulting subgraphs being ordered with an
Approximate Minimum Degree method under
constraints (HAMD)

Partition and Block Elimination Tree

→ domain decomposition

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

The symbolic block factorization
• Q(G,P)→Q(G,P)*=Q(G*,P)

=> linear in number of
blocks!

• Dense block structures
→ only a extra few pointers
to store the matrix

1
2

3
4

5
6

7

8
9

10
11

12
13

14

15

16
17

18
19

20
21

22

23
24

25
26

27
28

29

30

31

Matrix partitioning and mapping
⇒ Manage parallelism induced by sparsity (block elimination

tree).
⇒ Split and distribute the dense blocks in order to take into

account the potential parallelism induced by dense
computations .

⇒ Use optimal block size for pipelined BLAS3 operations.1
2

3
4

5
6

7

8
9

10
11

12
13

14

15

16
17

18
19

20
21

22

23
24

25
26

27
28

29

30

31

31

31

31

31

31

999

999

999

999

999

31

31

31

999

999

999

31

31

31

999

999

999

31
999

31

31

31

999

999

999

31

31

31

999

999

999

31

31

31

31

31

999

999

999

999

999

31

31

31

999

999

999

31

31

31

999

999

999

31
999

31

31

31

999

999

999

31

31

31

999

999

999

31

31

31

31

31

999

999

999

999

999

31

31

31

999

999

999

31

31

31

999

999

999

31
999

31

31

31

999

999

999

31

31

31

999

999

999

31

31

31

999

999

999

31

31

31

31

999

999

999

999

31

31

999

999

31

31

31

999

999

999

31
999

31

31

999

999

31

31

31

999

999

999

31

31

31

31

999

999

999

999

31

31

999

999

31

31

31

999

999

999

31
999

31

31

999

999

31

31

31

999

999

999

31

31

31

31

999

999

999

999

31

31

999

999

31

31

31

999

999

999

31
999

31

31

999

999

31

31

31

999

999

999

31

31

999

999

1:9

2:20

3:28

4:20

5:44

6:677:280

15:302

8:20

10:28

9:9

11:44

13:67

12:20

14:280

31:305

16:20

18:67

17:44

23:44

25:67

24:20

22:280

30:302

29:280

19:9

21:28

20:20

26:20

28:28

27:9

3
3

10

7
5

3

12 24

5 7

18

13

11

8

10
3

3 9 6

28

10

1010

3 3

3

3 3

37

77

5

55

3

33
12 12

1224

2424

5 5

5

7 7

7

3 3

3

18 18

18

11 11

11

9 9

9

6 6

6

10

1010

8

88

13

1313

3 3

3

28

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution1 2 3 4 5 6 7 8

1 2 3 4 5 5 6 7 8

5
1 2 3 4 5 6 7 8

4 41 2 2 3 86 7
2 321 6 7 7

CPU time prediction
Exact memory ressources

• Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation (all processors in the same
SMP node work directly in share memory)
Less MPI communication and lower the parallel memory
overcost

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Direct solver chain (in PaStiX)

Numerical experiments (TERA1)
• Successful approach for a large collection of industrial test

cases (PARASOL, Boeing Harwell, CEA) on IBM SP3
• TERA1 supercomputer of CEA Ile-de-France

(ES45 SMP 4 procs)
• COUPOLE40000 :

26.5 106 of unknowns
1.5 1010 NNZL and 10.8Tflops

• 356 procs: 34s
• 512 procs: 27s
• 768 procs: 20s

• (>500Gflop/s about 35% peak perf.)

Numerical experiments (TERA10)
• Successful approach on 3D mesh problem with about 30

millions of unkowns on TERA10 supercomputer
• But memory is the bottleneck !!!

• Mapping by processor
Static scheduling by processor

• Each processor owns its local part of
the matrix (private user space)

• Message passing (MPI or
MPI_shared_memory) between any
processors

• Aggregation of all contributions is done
per processor

• Data coherency insured by MPI
semantic

• Mapping by SMP node
Static scheduling by thread

• All the processors on a same SMP
node share a local part of the matrix
(shared user space)

• Message passing (MPI) between
processors on different SMP nodes

Direct access to shared memory
(pthread) between processors on a
same SMP node

• Aggregation of non local contributions
is done per node

• Data coherency insured by explicit
mutex

MPI/Threads implementation for SMP
clusters

SP3 : AUDI ; N=943.10 3 ; NNZL=1,21.109 ; 5,3 TFlops

0,00

100,00

200,00

300,00

400,00

500,00

Ti
m

e

16 32 64 128

SMP16

SMP8
SMP4

SMP1

Processors

0
50

100
150
200
250
300
350
400

%
 m

ax
 o

ve
rm

em
/ m

ax
 c

oe
ff.

16 32 64 128

SMP16

SMP8

SMP4

SMP1

Processors

(134,45)(211,35)############1

87,56155,23266,89472,674

81,90145,19265,09476,408

86,07152,58270,16481,9616

128643216Processors

N
um

. o
f t

hr
ea

ds

/ M
PI

 p
ro

ce
ss

0

0,2

0,4

0,6

0,8

1

S
ca

la
bi

lit
y

16 32 64 128

SMP16

SMP8

SMP4

SMP1

Processors

AUDI : 943.103 (symmetric)

• SP4 : 32 ways Power4+
(with 64Go)

51,02
100,4

04

47,2896,318

47,8093,1416

60,0394,2132

6432Procs

N
um

. o
f t

hr
ea

ds

/ M
PI

 p
ro

ce
ss

686

-

-

-

2

373

368

-

-

4

185

182

177

-

8

-

-

31,3

34,1

64

-952

55,399,74

57,798,68

59,79116

3216Procs

N
um

. o
f t

hr
ea

ds

/ M
PI

 p
ro

ce
ss

• SP5 : 16 ways Power5
(with 32Go)

pb. alloc.

no meaning

MHD1 : 485.103 (unsymmetric)

• SP4 : 32 ways Power4+
(with 64Go)

117,80202,684

115,79197,998

111,99187,8916

115,97199,1732

6432Procs

N
um

. o
f t

hr
ea

ds

/ M
PI

 p
ro

ce
ss

977

-

-

-

2

506

505

-

-

4

-

-

-

63,4

64

-

-

78,3

84,2

32

-2652

1362624

1412618

139-16

168Procs

N
um

. o
f t

hr
ea

ds

/ M
PI

 p
ro

ce
ss

• SP5 : 16 ways Power5
(with 32Go)

How to reduce memory resources
• Goal: we want to adapt a (supernodal) parallel direct solver

(PaStiX) to build an incomplete block factorization and
benefit from all the features that it provides:

Algorithmic is based on linear algebra kernels (BLAS)

Load-balancing and task scheduling are based on a fine
modeling of computation and communication

Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation

Incomplete factorization outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization
• An algorithm to get dense blocks in ILU
• Experiments

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Keep a N.D. ordering (NO RCM)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Main modification

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Few modifications

Incomplete factorization outlines

• Which modifications in the direct solver?
The symbolic incomplete factorization

• An algorithm to get dense blocks in ILU
• Experiments

Level based ILU(k)
• Scalar formulation of the level-of-fill:

Non zero entries of A have a level 0.
Consider the elimination of the kth unknowns during the fact.
then:

Level(aij) = MIN(level(aij) , level(aik)+level(akj)+1)

akk

aik

akj

aij

ajj

aii

j
k1

Level 3

k2 k3

k1, k2, k3 < i and j

i

Level-of-fill metric

• Scalar formulation of the level-of-fill:
• A fill-path, in the graph associated with the matrix A, is

a path between two nodes i and j such that the nodes
in this path have smaller number than i and j

• There is a fill-in value (i,j), at the end of the Gauss
elimination, iff there is a fill-path between i and j

• At the end of the factorization, the level-of-fill value (i,j)
is p iff there is a shortest fill-path of length p+1 between
i and j (0 for terms in A)

• The scalar incomplete factorization have the same
asymptotical complexity than the Inc. Fact.

• BUT: it requires much less CPU time

• D. Hysom and A. Pothen gives a practical algorithm that can
be easily // (based on the search of elimination paths of
length <= k+1) [Level Based Incompleted Factorization:
Graphs model and Algorithm (2002)]

Level based ILU(k)

Level based ILU(k)

• In a FEM method a mesh node corresponds to several
Degrees Of Freedom (DOF) and in this case we can use the
node graph instead of the adj. graph of A i.e. :
Q(G,P)→Q(G,P)k=Q(Gk,P) P = partition of mesh nodes

• This means the symbolic factorization will have a complexity
in the respect of the number of nodes whereas the
factorization has a complexity in respect to the number of
DOF.

Incomplete factorization outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization

An algorithm to get dense blocks in ILU
• Experiments

How to build a dense block structure in
ILU(k) factors ?
• First step: find the exact supernode partition in the ILU(k)

NNZ pattern

• In most cases, this partition is too refined (dense blocks are
usually too small for BLAS3)

• Idea: we allow some extra fill-in in the symbolic factor to build
a better block partition
Ex: How can we make bigger dense blocks if we allow 20%
more fill-in ?

• We imposed some constraints:

any permutation that groups columns with similar NNZ
pattern should not affect Gk

any permutation should not destroy the elimination tree
structure

=> We impose the rule « merge only with your father… » for the
supernode

How to build a dense block structure
in ILU(k) factors ?

Finding an approximated Supernodes
Partition (amalgamation algorithm)

First step : find the exact supernode partition

Finding an approximated Supernodes
Partition (amalgamation algorithm)

=extra fill-in

While the fill-in tolerance α is respected do:
Merge the couple of supernodes that add the

less extra fill-in

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the son

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

= zero entries

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the sons

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Repeat while extra fill-in < tol

Cost of the algorithm

• The approximate supernode merging algorithm is really
cheap compare to the other steps

At each step: recompute fill-add for modified (son-father)
couples and maintain the heap sort.

Complexity bound by O(D.N0 + N0.Log(N0))
N0 : number of exact supernodes in ILU factors
D : maximum number of extradiagonal blocks in a block-
column

Numerical experiments

• Results on IBM power5 + Switch “Federation”

• All computations were performed in double precision

• Iterative accelerator was GMRES (no restart)

• Stopping criterion for iterative accelerators was a relative
residual norm (||b-A.x||/||b||) of 1e-7

Test cases:

• AUDIKW_1 : Symmetric matrix (Parasol collection)
n = 943,695 nnz(A) = 39,297,771
With direct solver : nnz(L) = 30 x nnz(A)

total solution in 91s on 16 procs
3D

• MHD : Unsymmetric matrix (Y. Saad collection)
n = 485,597 nnz(A) = 24,233,141
With direct solver : nnz(L) = 46 x nnz(A)

total solution in 139s on 16 procs
3D

Parallel Time: AUDI (Power5)

63.30.7821.2679.37.80258.140 %5

123.11.1652.31058.98.86518.520 %5

65.70.6618.6732.07.57194.640 %3

108.70.9139.2936.87.97331.120 %3

67.00.4212.7620.34.4456.440 %1

91.50.5121.4690.14.5974.520 %1

TotalTR SolvFactTotalTR solvFactαK

16 processors1 processor

Prospects:

• Parallelization of the ordering (ParMetis, PT-Scotch)
and of the Inc. Symbolic Factorization

• Perform more experiments to explore different
classes of problems with symmetric and
unsymmetric version

• Plug this solver in real simulations (CEA, ITER)

ASTER project

• ANR CIS 2006 Adaptive MHD Simulation of Tokamak ELMs for ITER (ASTER)
• The ELM (Edge-Localized-Mode) is MHD instability which localised at the

boundary of the plasma
• The energy losses induced by the ELMs within several hundred microseconds

are a real concern for ITER

• The non-linear MHD simulation code JOREK is under development at the CEA to
study the evolution of the ELM instability

• To simulate the complete cycle of the ELM instability, a large range of time scales
need to be resolved to study:

• The evolution of the equilibrium pressure gradient (~seconds)
• ELM instability (~hundred microseconds)

a fully implicit time evolution scheme is used in the JOREK code

• This leads to a large sparse matrix system to be solved at every time step.
• This scheme is possible due to the recent advances made in the parallelized

direct solution of general sparse matrices (MUMPS, PaStiX, SuperLU, ...)

NUMASIS project

• Middleware for NUMA architecture
• Application to seismology simulation

• New dynamic scheduling algorithm for solvers
• Take into account non-uniform acces to memory
• Use of MadMPI (R. Namyst)

• Need a middleware to handle complexe architectures
• Multi-Rails, packet re-ordering, …

• PhD of Mathieu Faverge (INRIA-LaBRI)

HIPS solver

• Recent work of P. Hénon and J. Gaidamour (PhD student)
• Idea : build many subdomains that will be factorized with

direct method
• Iterations on the Schur complement
• Use of a specific ordering to control fill-in based on

Hierachical Interface Decomposition (HID) [Y. Saad, Phidal]
• Parallel implementation is achieved by mapping many

subdomains on each processor

• A way to get an efficient solver on grid architecture ?

HIPS solver

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
���� ����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
��������

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

1
2 3

4 5
6

56

3625124514

2312

45

2356

2,3,5,6

1,2,4,5

2,5

2,3

1,2

2 2 2

2

2

2 2,5

2,5

2

2

2

2

2

2 2 2

2 2 1,2

2 2,3 2,5 2,5

2,521,2

2 2 2,3

2,5

2

Local blocked−matrix for subdomain 2

Empty sparse matrix in intial matrix
(fill−in occurs during factorization)

Global domain partitioned into
6 subdomains

1 2 3

1

5

4 5 6

2

3

4

6

in the locally consistent strategy
Fill−in in these blocks is allowed

HIPS solver

• Strictly consistant fill-in:
• Fill-in is not allowed between

connectors of a same level
• Same structure of matrix A

1
2 3

4 5
6

56

3625124514

2312

45

2356

HIPS solver

1
2 3

4 5
6

56

3625124514

2312

45

2356

• Locally consistant fill-in:
• Fill-in is allowed between

connectors that are adjacent to
a same subdomain

HIPS solver

Links
• Scotch : http://gforge.inria.fr/projects/scotch
• PaStiX : http://gforge.inria.fr/projects/pastix
• MUMPS : http://mumps.enseeiht.fr/

http://graal.ens-lyon.fr/MUMPS
• ScAlApplix : http://www.labri.fr/project/scalapplix

• ANR CIGC Numasis
• ANR CIS Solstice & Aster

• Latest publication : to appear in Parallel Computing : On
finding approximate supernodes for an efficient ILU(k)
factorization

• For more publications, see : http://www.labri.fr/~ramet/

