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Motivation of this work

•• A A popularpopular choicechoice as an as an algebraicalgebraic preconditionerpreconditioner isis an an 
ILU(k) ILU(k) preconditionerpreconditioner ((levellevel--ofof--fillfill basedbased incinc. facto.). facto.)

•• BUTBUT
ParallelizationParallelization isis not not easyeasy

ScalarScalar formulation formulation doesdoes not  not  taketake advantageadvantage of of 
superscalarsuperscalar effecteffect (i.e. BLAS) (i.e. BLAS) 
=> => UsuallyUsually a a lowlow value of value of fillfill isis usedused (k=0 or k=1)(k=0 or k=1)

ManyMany peoplepeople are are workingworking on on hybridhybrid methodsmethods
(Luc Giraud (Luc Giraud atat IRIT, David IRIT, David KeyesKeyes atat LivermoreLivermore, , ……))

Motivation of this work
ILU + Krylov ILU + Krylov MethodsMethods
BasedBased on on scalarscalar implementationimplementation

DifficultDifficult to to parallelizeparallelize ((mostlymostly DD + DD + 
Schwartz additive => # of Schwartz additive => # of 
iterationsiterations dependsdepends on the on the numbernumber
of processors)of processors)

LowLow memorymemory consumptionconsumption

PrecisionPrecision ~ 10^~ 10^--5  5  

Direct Direct methodsmethods

BLAS3 (BLAS3 (mostlymostly DGEMM)DGEMM)
Thread/SMP, Thread/SMP, LoadLoad BalanceBalance……

ParallelizationParallelization job job isis donedone (MUMPS, (MUMPS, 
PASTIX, SUPERLUPASTIX, SUPERLU……) ) 

High High memorymemory consumptionconsumption : : veryvery
large 3D large 3D problemsproblems are out of are out of theirtheir
leagueleague (100 millions (100 millions unknownsunknowns))

Great Great precisionprecision ~ 10^~ 10^--1818

We want a trade-off !



PaStiX solver

• Current development team (SOLSTICE)
• F. Pellegrini (assistant professor LaBRI/INRIA)
• P. Hénon (researcher INRIA)
• P. Ramet (assistant professor LaBRI/INRIA)
• J. Roman (professor, leader of ScAlApplix INRIA project)

• PhD student
• M. Faverge (NUMASIS project)

• Others contributors since 1998
• D. Goudin (CEA-DAM)
• D. Lecas (CEA-DAM)

• Main users
• Electomagnetism & structural mechanics codes at CEA-DAM CESTA
• MHD Plasma instabilities for ITER at CEA-Cadarache (ASTER)
• Fluid mechanics at MAB Bordeaux

Graphs and Sparse Matrices:  
Cholesky factorization
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Symmetric Gaussian elimination:
for j = 1 to n

add edges between j’s
higher-numbered neighbors

Fill: new nonzeros in factor



Direct solver chain (in PaStiX)
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Sparse matrix ordering (minimizes fill-in)
•Scotch: an hybrid algorithm 

• incomplete Nested Dissection
• the resulting subgraphs being ordered with an 
Approximate Minimum Degree method under 
constraints (HAMD)



Partition and Block Elimination Tree

→ domain decomposition



Direct solver chain (in PaStiX)
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The symbolic block factorization
• Q(G,P)→Q(G,P)*=Q(G*,P)

=> linear in number of 
blocks!

• Dense block structures 
→ only a extra few pointers
to store the matrix
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Matrix partitioning and mapping
⇒ Manage parallelism induced by sparsity (block elimination 

tree).
⇒ Split and distribute the dense blocks in order to take into 

account the potential parallelism induced by dense 
computations .

⇒ Use optimal block size for pipelined BLAS3 operations.1
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Direct solver chain (in PaStiX)
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CPU time prediction
Exact memory ressources 

• Modern architecture management (SMP nodes) : hybrid 
Threads/MPI implementation (all processors in the same 
SMP node work directly in share memory)
Less MPI communication and lower the parallel memory 
overcost
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Direct solver chain (in PaStiX)



Numerical experiments (TERA1)
• Successful approach for a large collection of industrial test 

cases (PARASOL, Boeing Harwell, CEA) on IBM SP3
• TERA1 supercomputer of CEA Ile-de-France 

(ES45 SMP 4 procs)
• COUPOLE40000 : 

26.5 106 of unknowns 
1.5 1010 NNZL and 10.8Tflops

• 356 procs: 34s
• 512 procs: 27s
• 768 procs: 20s 

• (>500Gflop/s about 35% peak perf.)

Numerical experiments (TERA10)
• Successful approach on 3D mesh problem with about 30 

millions of unkowns on TERA10 supercomputer
• But memory is the bottleneck !!!



• Mapping by processor
Static scheduling by processor

• Each processor owns its local part of 
the matrix (private user space)

• Message passing (MPI or 
MPI_shared_memory) between any 
processors

• Aggregation of all contributions is done 
per processor

• Data coherency insured by MPI 
semantic

• Mapping by SMP node
Static scheduling by thread

• All the processors on a same SMP 
node share a local part of the matrix 
(shared user space)

• Message passing (MPI) between 
processors on different SMP nodes

Direct access to shared memory 
(pthread) between processors on a 
same SMP node

• Aggregation of non local contributions 
is done per node

• Data coherency insured by explicit 
mutex

MPI/Threads implementation for SMP 
clusters

SP3 : AUDI ; N=943.10 3 ; NNZL=1,21.109 ; 5,3 TFlops
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AUDI : 943.103 (symmetric)

• SP4 : 32 ways Power4+ 
(with 64Go)
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MHD1 : 485.103 (unsymmetric)

• SP4 : 32 ways Power4+ 
(with 64Go)

117,80202,684

115,79197,998

111,99187,8916

115,97199,1732

6432Procs

N
um

. o
f t

hr
ea

ds
 

/ M
PI

 p
ro

ce
ss

977

-

-

-

2

506

505

-

-

4

-

-

-

63,4

64

-

-

78,3

84,2

32

-2652

1362624

1412618

139-16

168Procs

N
um

. o
f t

hr
ea

ds
 

/ M
PI

 p
ro

ce
ss

• SP5 : 16 ways Power5 
(with 32Go)



How to reduce memory resources
• Goal: we want to adapt a (supernodal) parallel direct solver

(PaStiX)  to build an incomplete block factorization and 
benefit from all the features that it provides:

Algorithmic is based on linear algebra kernels (BLAS)

Load-balancing and task scheduling are based on a fine 
modeling of computation and  communication

Modern architecture management (SMP nodes) : hybrid 
Threads/MPI implementation

Incomplete factorization outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization 
• An algorithm to get dense blocks in ILU
• Experiments
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Keep a N.D. ordering (NO RCM)
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Few modifications

Incomplete factorization outlines

• Which modifications in the direct solver?
The symbolic incomplete factorization 

• An algorithm to get dense blocks in ILU
• Experiments



Level based ILU(k)
• Scalar formulation of the level-of-fill:

Non zero entries of A have a level 0.
Consider the elimination of the kth unknowns during the fact. 
then:

Level(aij) = MIN( level(aij) , level(aik)+level(akj)+1 )

akk

aik

akj

aij

ajj

aii

j
k1

Level 3

k2 k3

k1, k2, k3 < i and j

i

Level-of-fill metric

• Scalar formulation of the level-of-fill:
• A fill-path, in the graph associated with the matrix A, is 

a path between two nodes i and j such that the nodes 
in this path have smaller number than i and j

• There is a fill-in value (i,j), at the end of the Gauss 
elimination, iff there is a fill-path between i and j

• At the end of the factorization, the level-of-fill value (i,j) 
is p iff there is a shortest fill-path of length p+1 between 
i and j (0 for terms in A)



• The scalar incomplete factorization have the same
asymptotical complexity than the Inc. Fact.

• BUT: it requires much less CPU time 

• D. Hysom and A. Pothen gives a practical algorithm that can
be easily // (based on the search of elimination paths of 
length <= k+1)  [Level Based Incompleted Factorization: 
Graphs model and Algorithm (2002)]

Level based ILU(k)

Level based ILU(k)

• In a FEM method a mesh node corresponds to several 
Degrees Of Freedom (DOF) and in this case we can use the 
node graph instead of the adj. graph of A  i.e. : 
Q(G,P)→Q(G,P)k=Q(Gk,P)  P = partition of  mesh nodes

• This means the symbolic factorization will have a complexity 
in the respect of the number of nodes whereas the 
factorization has a complexity in respect to the number of 
DOF.



Incomplete factorization outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization 

An algorithm to get dense blocks in ILU
• Experiments

How to build a dense block structure in 
ILU(k) factors ?
• First step: find the exact supernode partition in the ILU(k) 

NNZ pattern 

• In most cases, this partition is too refined (dense blocks are 
usually too small for BLAS3)

• Idea: we allow some extra fill-in in the symbolic factor to build
a better block partition
Ex: How can we make bigger dense blocks if we allow 20% 
more fill-in ?



• We imposed some constraints:

any permutation that groups columns with similar NNZ 
pattern should not affect Gk

any permutation should not destroy the elimination tree
structure 

=> We impose the rule « merge only with your father… » for the 
supernode

How to build a dense block structure 
in ILU(k) factors ?

Finding an approximated Supernodes
Partition  (amalgamation algorithm)

First step : find the exact supernode partition



Finding an approximated Supernodes
Partition (amalgamation algorithm)

=extra fill-in

While the fill-in tolerance α is respected do:
Merge the couple of supernodes that add the     

less extra fill-in

Finding an approximated Supernodes
Partition (amalgamation algorithm)



Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the son

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father



Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

= zero entries



Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the sons



Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Repeat while extra fill-in < tol



Cost of the algorithm

• The approximate supernode merging algorithm is really
cheap compare to the other steps

At each step: recompute fill-add for modified (son-father) 
couples and maintain the heap sort.

Complexity bound by O(D.N0 + N0.Log(N0)) 
N0 : number of exact supernodes in ILU factors
D  : maximum number of extradiagonal blocks in a block-
column

Numerical experiments

• Results on IBM power5 + Switch “Federation”

• All computations were performed in double precision

• Iterative accelerator was GMRES (no restart)

• Stopping criterion for iterative accelerators was a relative 
residual norm (||b-A.x||/||b||) of 1e-7



Test cases:

• AUDIKW_1 : Symmetric matrix (Parasol collection)
n = 943,695   nnz(A) = 39,297,771
With direct solver : nnz(L) = 30 x nnz(A)

total solution in 91s on 16 procs
3D 

• MHD : Unsymmetric matrix (Y. Saad collection) 
n = 485,597   nnz(A) = 24,233,141 
With direct solver : nnz(L) = 46 x nnz(A)

total solution in  139s on 16 procs
3D





Parallel Time: AUDI (Power5)

63.30.7821.2679.37.80258.140 %5

123.11.1652.31058.98.86518.520 %5

65.70.6618.6732.07.57194.640 %3

108.70.9139.2936.87.97331.120 %3

67.00.4212.7620.34.4456.440 %1

91.50.5121.4690.14.5974.520 %1

TotalTR SolvFactTotalTR solvFactαK

16 processors1 processor





Prospects:

• Parallelization of the ordering (ParMetis, PT-Scotch)
and of the Inc. Symbolic Factorization

• Perform more experiments to explore different 
classes of problems with symmetric and 
unsymmetric version

• Plug this solver in real simulations (CEA, ITER)

ASTER project

• ANR CIS 2006 Adaptive MHD Simulation of Tokamak ELMs for ITER (ASTER)
• The ELM (Edge-Localized-Mode) is MHD instability which localised at the 

boundary of the plasma
• The energy losses induced by the ELMs within several hundred microseconds

are a real concern for ITER

• The non-linear MHD simulation code JOREK is under development at the CEA to 
study the evolution of the ELM instability

• To simulate the complete cycle of the ELM instability, a large range of time scales
need to be resolved to study:

• The evolution of the equilibrium pressure gradient (~seconds)
• ELM instability (~hundred microseconds)

a fully implicit time evolution scheme is used in the JOREK code

• This leads to a large sparse matrix system to be solved at every time step. 
• This scheme is possible due to the recent advances made in the parallelized

direct solution of general sparse matrices (MUMPS, PaStiX, SuperLU, ...)



NUMASIS project

• Middleware for NUMA architecture
• Application to seismology simulation

• New dynamic scheduling algorithm for solvers
• Take into account non-uniform acces to memory
• Use of MadMPI (R. Namyst)

• Need a middleware to handle complexe architectures
• Multi-Rails, packet re-ordering, …

• PhD of Mathieu Faverge (INRIA-LaBRI)

HIPS solver

• Recent work of P. Hénon and J. Gaidamour (PhD student)
• Idea : build many subdomains that will be factorized with

direct method
• Iterations on the Schur complement
• Use of a specific ordering to control fill-in based on 

Hierachical Interface Decomposition (HID) [Y. Saad, Phidal]
• Parallel implementation is achieved by mapping many

subdomains on each processor

• A way to get an efficient solver on grid architecture ?



HIPS solver

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
���� ����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
��������

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

1
2 3

4 5
6

56

3625124514

2312

45

2356

2,3,5,6

1,2,4,5

2,5

2,3

1,2

2 2 2

2

2

2 2,5

2,5

2

2

2

2

2

2 2 2

2 2 1,2

2 2,3 2,5 2,5

2,521,2

2 2 2,3

2,5

2

Local blocked−matrix for subdomain 2

Empty sparse matrix in intial matrix
(fill−in occurs during factorization)

Global domain partitioned into 
6 subdomains

1 2 3

1

5

4 5 6

2

3

4

6

in the locally consistent strategy
Fill−in in these blocks is allowed 

HIPS solver

• Strictly consistant fill-in:
• Fill-in is not allowed between

connectors of a same level
• Same structure of matrix A
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HIPS solver

1
2 3

4 5
6

56

3625124514

2312

45

2356

• Locally consistant fill-in:
• Fill-in is allowed between

connectors that are adjacent to 
a same subdomain

HIPS solver



Links
• Scotch : http://gforge.inria.fr/projects/scotch
• PaStiX : http://gforge.inria.fr/projects/pastix
• MUMPS : http://mumps.enseeiht.fr/

http://graal.ens-lyon.fr/MUMPS
• ScAlApplix : http://www.labri.fr/project/scalapplix

• ANR CIGC Numasis
• ANR CIS Solstice & Aster

• Latest publication : to appear in Parallel Computing : On 
finding approximate supernodes for an efficient ILU(k) 
factorization

• For more publications, see : http://www.labri.fr/~ramet/


